製品名:7-fluoro-3-({1-[3-(2-methoxyethyl)-1,2,4-thiadiazol-5-yl]piperidin-4-yl}methyl)-2-methyl-3,4-dihydroquinazolin-4-one

IUPAC Name:7-fluoro-3-({1-[3-(2-methoxyethyl)-1,2,4-thiadiazol-5-yl]piperidin-4-yl}methyl)-2-methyl-3,4-dihydroquinazolin-4-one

CAS番号:2415469-80-4
分子式:C20H24FN5O2S
純度:95%+
カタログ番号:CM910745
分子量:417.5

包装単位 有効在庫 価格(USD) 数量

研究開発用専用.

問い合わせフォーム

   refresh    

製品詳細

CAS番号:2415469-80-4
分子式:C20H24FN5O2S
融点:-
SMILESコード:COCCC1=NSC(=N1)N1CCC(CN2C(C)=NC3=C(C=CC(F)=C3)C2=O)CC1
密度:
カタログ番号:CM910745
分子量:417.5
沸点:
MDL番号:
保管方法:

Category Infos

Piperidines
Piperidine is an azacycloalkane that is cyclohexane in which one of the carbons is replaced by a nitrogen. Although piperidine is a common organic compound, it is an immensely important class of compounds medicinally: the piperidine ring is the most common heterocyclic subunit among FDA approved drugs.
Piperidine,Piperidine Price
if you want to know the latest news about piperidine and piperidine price, please come to our website and get a quote for free.
Quinazolines
Quinazolines belong to heterocyclic chemistry, also known as 1,3-naphthalenes. The backbone consists of two six-membered aromatic rings fused to each other, with two nitrogen atoms at positions 1 and 3 on the backbone. The presence of these two nitrogen atoms in quinazoline increases its importance in pharmaceutical and biological reactions. Quinazolines and their derivatives are among the most important heterocyclic compounds due to their diverse chemical reactivity and important range of biological activities.
Thiadiazoles
Thiadiazoles are a subfamily of azoles. Structurally, they are five-membered heterocyclic compounds containing two nitrogen atoms and one sulfur atom, and two double bonds, forming an aromatic ring. Depending on the relative positions of the heteroatoms, there are four possible structures; these forms do not interconvert and are therefore structural isomers rather than tautomers. These compounds themselves are rarely synthesized and have no particular utility, however, compounds that use them as structural motifs are fairly common in pharmacology.