製品名:2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole
IUPAC Name:2-benzyl-5-(chloromethyl)-1,3,4-oxadiazole
Product Overview |
2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole (BCMO) is a heterocyclic compound belonging to the oxadiazole class of compounds. It is a five-membered ring system consisting of two nitrogen atoms and one oxygen atom. BCMO is a versatile compound with a wide range of applications in scientific research and laboratory experiments. |
Synthesis and Application |
2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole can be synthesized by several different methods. A common approach is the condensation of 2-benzyl-5-chloro-1,3,4-oxadiazole-2-thiol with 2-aminobenzaldehyde, which can be done in the presence of a catalyst such as zinc chloride or piperidine. Another method involves the reaction of 2-chloro-5-methyl-1,3,4-oxadiazole-2-thiol with 2-aminobenzaldehyde in the presence of a catalyst such as zinc chloride or piperidine. The reaction of 2-benzyl-5-chloro-1,3,4-oxadiazole-2-thiol with 2-aminobenzaldehyde in the presence of a catalyst such as zinc chloride or piperidine can also be used to synthesize 2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole. 2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole has been used in a variety of scientific research applications. It has been used as a model compound to study the mechanism of action of drugs, as an inhibitor of enzymes, and as a catalyst for chemical reactions. 2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole has also been used to study the structure and function of proteins and to investigate the interactions between proteins and drugs. Additionally, 2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole has been used to study the properties of organic compounds and to investigate the synthesis of organic compounds. |
Future Directions |
There are several potential future directions for 2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole research. One potential direction is the development of new synthesis methods for 2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole. This could involve the use of new catalysts or the development of new reaction conditions. Additionally, further research could be done on the mechanism of action of 2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole, as well as its biochemical and physiological effects. Furthermore, research could be done to investigate the use of 2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole as a drug delivery system or as a therapeutic agent. Finally, research could be done to explore the potential applications of 2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole in other areas, such as agriculture or food science. |