製品名:2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole

IUPAC Name:2-benzyl-5-(chloromethyl)-1,3,4-oxadiazole

CAS番号:36646-13-6
分子式:C10H9ClN2O
純度:95%+
カタログ番号:CM374188
分子量:208.65

包装単位 有効在庫 価格(USD) 数量
CM374188-250mg in stock ƈǸ
CM374188-1g in stock ħħǸ

研究開発用専用.

問い合わせフォーム

   refresh    

製品詳細

CAS番号:36646-13-6
分子式:C10H9ClN2O
融点:-
SMILESコード:ClCC1=NN=C(CC2=CC=CC=C2)O1
密度:
カタログ番号:CM374188
分子量:208.65
沸点:
MDL番号:
保管方法:

Category Infos

Oxadiazoles
Oxadiazoles are a class of heterocyclic aromatic compounds with the molecular formula C2H2N2O, which have special biological activities and thermodynamic properties. Five-membered heterocyclic moieties composed of three or two heteroatoms are of great interest to researchers because these compounds show significant therapeutic potential. These heterocycles can serve as a building block for the development of novel molecular structures.

Related Products



Product Other Information

Product Overview 2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole (BCMO) is a heterocyclic compound belonging to the oxadiazole class of compounds. It is a five-membered ring system consisting of two nitrogen atoms and one oxygen atom. BCMO is a versatile compound with a wide range of applications in scientific research and laboratory experiments.
Synthesis and Application 2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole can be synthesized by several different methods. A common approach is the condensation of 2-benzyl-5-chloro-1,3,4-oxadiazole-2-thiol with 2-aminobenzaldehyde, which can be done in the presence of a catalyst such as zinc chloride or piperidine. Another method involves the reaction of 2-chloro-5-methyl-1,3,4-oxadiazole-2-thiol with 2-aminobenzaldehyde in the presence of a catalyst such as zinc chloride or piperidine. The reaction of 2-benzyl-5-chloro-1,3,4-oxadiazole-2-thiol with 2-aminobenzaldehyde in the presence of a catalyst such as zinc chloride or piperidine can also be used to synthesize 2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole. 2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole has been used in a variety of scientific research applications. It has been used as a model compound to study the mechanism of action of drugs, as an inhibitor of enzymes, and as a catalyst for chemical reactions. 2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole has also been used to study the structure and function of proteins and to investigate the interactions between proteins and drugs. Additionally, 2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole has been used to study the properties of organic compounds and to investigate the synthesis of organic compounds.
Future Directions There are several potential future directions for 2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole research. One potential direction is the development of new synthesis methods for 2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole. This could involve the use of new catalysts or the development of new reaction conditions. Additionally, further research could be done on the mechanism of action of 2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole, as well as its biochemical and physiological effects. Furthermore, research could be done to investigate the use of 2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole as a drug delivery system or as a therapeutic agent. Finally, research could be done to explore the potential applications of 2-Benzyl-5-(chloromethyl)-1,3,4-oxadiazole in other areas, such as agriculture or food science.