Oxazoles are heterocyclic aromatic compounds containing one oxygen atom and one nitrogen atom, separated by a carbon atom. The presence of two heteroatoms (oxygen and nitrogen) provides possible interactions (hydrogen, hydrophobic, van der Waals or dipole bonds) with a wide range of receptors and enzymes. Oxazole rings are valuable heterocyclic scaffolds for the design of novel therapeutics with anticancer, antiviral, antibacterial, anti-inflammatory, neuroprotective, antidiabetic, and antidepressant properties due to their wide range of targets and biological activities.
Tetrahydroisoquinoline is an organic compound with the chemical formula C9H11N. It is classified as a secondary amine, obtained from isoquinoline by hydrogenation. The tetrahydroisoquinoline moiety forms the backbone of several natural, synthetic and semi-synthetic drugs approved for the treatment of cancer, pain, gout and various neurodegenerative diseases.
The use of azepane as a scaffold for drug discovery remains of interest. The azepane linker is the key to efficient activity. A number of seven-membered ring derivatives have been prepared or investigated for their potential or actual pharmacological properties. Examples include azaalkane derivatives as PKB (protein kinase B) inhibitors.